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a b s t r a c t

A variational-asymptotic model of the Griffith criterion for the development of a crack is constructed for
a complex stress-strain state. It is assumed that the shear loads are much smaller than the breaking loads
but the longitudinal loading of the crack is taken into account. Using asymptotic analysis, the problem of
finding the minimum of the total energy of a body with a crack reduces to a sequence of algebraic equations,
the solutions of which determine the form of the branch of the crack and its length as a function of a time-
like dimensionless parameter. The absence of solutions is treated as a conversion of the fracture process
to a dynamic stage and the impossibility of a quasistatic formulation of the problem. In particular, the
application of shear and longitudinal loads just leads to an avalanche-type growth of the crack.

© 2008 Elsevier Ltd. All rights reserved.

1. Formulation of the problem of the slightly curved crack

Suppose � ⊂ R2 is a plane homogeneous anisotropic body with a rectilinear boundary crack L. We introduce systems of Cartesian
coordinates x = (x1, x2) and polar coordinates (r,�) with centre O at the cut tip, and we direct the semiaxes Ox1 and the polar axis along
continuation of the cut. The equilibrium equations and the boundary conditions have the form

(1.1)

(1.2)

Here, ∂i = ∂xi, n = (n1, n2) is the unit vector of the out ward normal to the boundary ∂�, �jk(u) are the Cartesian components of the stress
tensor �(u) and u = (u1, u2) is the displacement vector. There are no body forces and the stresses g = (g1, g2) are applied to the external
boundary of the body, that is, g = 0 on the surfaces L± of the crack L.

The aim of this paper is to find the trajectory of the quasistatic propagation of the branch of the crack in the case of a complex load

(1.3)

Here, g1 and g2 are the forces which generate the stressed state of the first and second modes close to the tip respectively, � is a
dimensionless parameter and g′ is the component which describes the evolution of the external stresses. The introduction of a time-
like loading parameter � ≥ 0 justifies us in neglecting inertial terms and ensures the formulation of the quasistatic fracture problem. The
presence of the small parameter � > 0 in the expansion (1.3) means that the load g1 leads to a rectilinear propagation of the crack and the
term �g2 produces a small deviation of the branch and permits the use of asymptotic methods. The crack development trajectory has the
form

(1.4)

The result of the calculations which are subsequently carried out is the asymptotic of the first two coefficients Hm(�) of the series (1.4)
with respect to � and the asymptotic of the projection h(�, �) of the end of the branch onto the Ox1 axis at the instant � ∈ [0, �0]. Note that
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the half-integer exponents x1 are consistent with the analogous singularities of the elastic fields close to the crack tip and the form (1.4)
for the branch was apparently discussed for the first time in Refs. 1 and 2.

In this paper, the trajectory of the crack is determined using the Griffith criterion in the initial formulation, since the concept of rate
of energy release and the accompanying invariant integrals, which are frequently used in fracture mechanics, are insufficient in our case.
In fact, following Griffith, we assume that, for any small � > 0, the total energy of a body � with a developing crack L(�), which is equal
to the sum of the strain potential energy and the surface energy, takes the smallest value among the energies corresponding to other
possible forms and lengths of branches of the crack ϒ(�) = L(�)\L. The problem of finding the optimal form is not completely solvable using
present-day mathematical apparatus. Assumption (1.3) and the constraints � � 1, � � 1 considerably simplify the general problem and
enable us to reduce it to a recursive sequence of proper algebraic problems. In certain cases, they can become unsolvable. This means
that the crack develops in an unstable and avalanche-type manner and a quasistatic formulation of the problem, which excludes dynamic
effects, is inadmissible. If, however, solutions exist, then the form of the crack and the position of its tip at an instant � are recovered
using these solutions. A multiplicity of solutions is interpreted as the possibility of bifurcations. In other words, a model of the energy
fracture criterion is proposed for a complex stress-strain state caused by the distortion of the crack. Similar variational-asymptotic models
of different criteria have been constructed earlier3–6 in the case of the rectilinear growth of one- and two-dimensional cracks. Note that the
addition to series (1.4) of the term xˇ/2

1 Hˇ(ε) with a non-integral exponent � introduces an additional problem into the above-mentioned
recursion sequence in the solution of which we always obtain that H� = 0. In a certain sense, this fact justifies the asymptotic formulation
(1.4).

The so-called deformation basis of singular solutions of the anisotropic problem of elasticity theory in a plane with a crack is introduced
in Section 2. On the whole, the properties of the elements of this basis are the same as in the case of an isotropic plane, and the sole
difference is the integral characteristic (2.12), that is, the symmetric positive-definite matrix M which, in the case of an isotropic medium,
is proportional to the unit matrix (see formula (5.9) below). The elements Mj,k

p,q of the energy release matrix for a slightly curved crack
are expressed in terms of the matrix M and the terms of the series (1.4) (Sections 3 and 4). Scenarios for the quasistatic growth of a crack
with and without longitudinal loading are described using the asymptotic formulae obtained in Sections 5–7. In particular, it is established
when the fracture process transfers into a dynamic stage. Conditions, which ensure one or another type of crack propagation, are discussed
in the concluding Section 8.

2. Singularities and weighting functions

The behaviour of the stress-strain state close to the crack tip is for the most part characterized by the two power solutions (displacement
vectors) of the homogeneous theory of elasticity in a plane with a semi-infinite cut �̇ = {x : x1 < 0, x2 = 0}, which generate the root stress
singularities

(2.1)

Normalizations of the basis (2.1), adapted to fracture criteria of a different physical nature, have been proposed.7,8 It will henceforth be
more convenient to use a “deformation” basis which satisfies the relations

(2.2)

Here, [�](x1) = �(x1, +0) − �(x1, −0) is the jump in the function � on the cut surfaces, �j,k is the Kronecker delta and the factor B = B11,11 is
an element of the pliability tensor which is the inverse of the stiffness tensor A in Hooke’s law � = A� (� is the strain tensor with components
�jk = (∂juk + ∂kuj)/2). The power solutions, satisfying the normalization conditions (2.2), possess additional properties8 which simplify the
asymptotic analysis:

(2.3)

(2.4)

(2.5)

In the case of an isotropic material, the deformation and usual force bases are identical and relations (2.3)–(2.5) are a direct corollary of
the explicit formulae.

According to general results9 (see also the Refs. 10 and 7) a basis of “non-energy” power solutions with a homogeneity exponent of
−1/2 exists

(2.6)

which is subject to the biorthogonality conditions

(2.7)

While k = q = 1 in relations (2.7), we shall later extend them to other values of the indices. The antisymmetric form

(2.8)

(2.9)
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as a contour integral in Green’s formula. Here, ds is an element of length of a simple smooth arc �, joining the surfaces of the cut 	 and
the containing the tip O, and n is the unit outward normal to the boundary of the domain which is contained within �. If the fields u and �
satisfy the homogeneous equilibrium equations and the homogeneous boundary conditions (1.2), then the integral (2.8) is invariant. The
relation, which resembles the rule for integration by parts,

(2.10)

has been proved.11

The derivatives ∂1Xj,1 of solutions (2.1) along the crack remain power solutions but acquire an exponent −1/2 and are therefore
decomposed using the basis (2.6)

(2.11)

The equalities

(2.12)

hold by virtue of formulae (2.7) and (2.10). Consequently, the 2 × 2 matrix M = (Mjk) is symmetric. It has been verified11,7 that it is positive-
definite.

The derivative ∂2X2,1 is not a power solution on account of the fact that the right-hand side of formula (2.4) is non zero when j = 2. By
virtue of equality (2.5), the derivative ∂2X1,1 is a power solution and, according to representations (2.5) and (2.11), we have

(2.13)

A further group of power solutions

(2.14)

satisfies the relations10

(2.15)

It follows from this and from formula (2.10) that equalities (2.7) hold when k,q = 1, 3.
Finally, there are power solutions

(2.16)

The first of them depends linearly on the variable x and corresponds to stretching along the crack

(2.17)

The second is normalized by conditions (2.7), which are now extended to all values of the indices k, q = 1, 2, 3. The solutions X2,2 and Y2,2,
which are analogous to solutions (2.16), correspond to rotation about the point O and to a moment concentrated at this point, but do not
occur in the subsequent calculations. Note that equalities (2.17) determine the component ∂1X1,2

1 = B
1i(X1,2) = B of the strain tensor, and

this means that X1,2
1 (x) = Bx1 + Cx2 and

(2.18)

The above mentioned power solutions form the asymptotic of the solution u0(x) of the problem of a crack in a body � under a load g0

(2.19)

Here, c(x) is a rigid displacement, K0
1,1 and K0

2,1 are the stress intensity factors (SIFs) of the two modes, according to equalities (2.17), K0
1,2 is

the bounded part of the longitudinal stress at the point O, and K0
1,3 and K0

2,3 are the coefficients of the lowest stress singularities (“lowest
SIFs”). We will denote the SIFs for the solution u′(x) of the same problem, but in the case of a load g′, by Kj,1

′ etc.
Since the normalization conditions (2.2) operate with the jumps in the displacements on the crack surfaces, the products 8BK0

1,1 and

8BK0
2,1 would be correctly called strain intensity factors (StrainIFs). The stresses in the branch of the crack are calculated8 using the formulae

(2.20)

In the case of an isotropic material, (2B)−1M is the unit matrix, i.e., K0
j,1 is an SIF in a classical sense. Relations (2.20) enable us to reformulate

the results of Sections 5–7 in terms of classical SIFs but the intermediate calculations are simpler in the case of normalization conditions
(2.2). It is therefore convenient to relate the expansions of the stress-strain state for the first and second modes with the StrainIF rather
than the SIF concept for example because, in the case of isotropic strength properties of a material, the propagation of a rectilinear crack
in an anisotropic body is ensured8 by the equality K0

2,1 = 0 in the case of StrainIFs. In order not to introduce too much new terminology,
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in expansions (2.16) and subsequently, we call K0
j,1 stress intensity factors, learning in mind their conversion into classical SIFs using to

relations (2.20).
The weighting functions �j,k, that is, the solutions of homogeneous problem (1.1), (1.2) with the specified behaviour around the tip O

(2.21)

will be subsequently required below.
They play a part in the integral representations of the SIFs (see Refs. 12,9,7, etc.)

(2.22)

In formulae (2.21) and (2.22), the subscripts j and k take the values indicated in definitions (2.1), (2.6) and (2.14), (2.16). The rigid dis-
placements c(x) and cj,k(x) do not appear in the calculations and can be chosen arbitrarily. The weighting function �2,2 does not exist. The
coefficients Lj,k

p,q in expansion (2.21) depend on the stiffness tensor A and the shape of the body �. The 5 × 5 matrix L = (Lj,k
p,q) is symmetric

and is positive-definite for a boundary crack L (see Refs. 10,13,14).
We will assume that the inequality K0

1,1 > 0 holds which, by virtue of the normalization conditions (2.2), means that the crack is open.

The second expansion of (1.3) shows that the SIFs K0
1,1 and K0

1,3 and

(2.23)

are found using formulae (2.22), in which the load g is replaced by its components g1 and �g2 respectively. Because of the choice of the
parameter � ≥ 0, it is possible to ensure the equality K0

1,1 = |K̄0
2,1| but it is sufficient to assume that the SIFs K0

1,1 and K̄0
2,1 are quantities of

the same order of magnitude. No constraints are imposed on K0
1,2 and Kj,k

′.

3. Increments in the surface and potential energies

By virtue of formula (1.4), an increment in the surface energy has the form

(3.1)

It follows that a branch of a crack ϒ(�) is interpreted as a singular perturbation of the boundary of the body �\L. Procedures exist15–17 for
calculating of the asymptotic of energy functionals for general self-adjoint boundary value problems, based on the methods of composite
and matched asymptotic expansions. These procedures have been adapted10,18,14,8 for singularly perturbed problems in the theory of
elasticity and, in particular, to problems of crack mechanics. An increment in the strain potential energy accompanying the formation of
a distorted branch under a constant load is approximated to any accuracy by a quadratic form of the coefficients of the expansion of the
solution u0(x) close to the crack tip. The quadratic form is constructed using two infinite matrices but, since the subsequent calculations are
carried out with an error O(h5/2), the 5 × 5 matrices L of coefficients of the expansions (2.21) of the singular solutions of the first limiting
problem (1.1), (1.2) in the domain � and the matrices M, composed of the coefficients Mj,k

p,q of the expansions of the solutions wj,k of the
second limiting problem in a plane with a distorted semi-infinite cut

(3.2)

are sufficient for constricting of the quadratic form.
The second limiting problem is obtained as a result of changing to the stretched coordinates � = h−1x and its solutions wj,k satisfy the

homogeneous equilibrium equations (1.1) in R2\L with the homogeneous boundary conditions (1.2) on the surfaces L± of the cut (3.2) and
the asymptotic conditions at infinity

(3.3)
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A modification17 of the method of matched asymptotic expansions gives14 the following matrix representation for the difference �U
in the strain potential energy of the body �\L under a load g0 and of the body �\L(�) under a load g = g + �g′

(3.4)

(3.5)

(3.6)

Here � is the sign of transposition, the magnitude of (3.5) is independent of the form of the branch and, in particular, of the parameter h,

and K′ is a column, similar to (3.6), of SIFs generated by a load g′. Applying Neumann’s formula to the matrix (M−1 − ELG)
−1

, taking account
of the smallness of the diagonal matrix G and discarding the terms o(h2), we transform expression (3.4) to the form

(3.7)

Here and henceforth, summation is carried out over the indices j, p, q, m = 1, 2. Formula (3.7) can be obtained directly using asymp-
totic methods without the intermediate expressions (3.4) (see Refs. 15,16,10,18,8). However, matrix notation17 simplifies the calculations
considerably.

The matrix M with the elements Mj,k
p,q = Mj,k

p,q(h, H) is a 5 × 5 matrix since the indices j = k = 2 and p = q = 2 are not included in formulae
(3.3) and (3.7) and it is called the (truncated) energy release matrix (for details, see Ref. 14 and previous publications15,10,17). The matrix M
is symmetric and positive-definite. If the branch ϒ(�) lies on the continuation of the crack and, correspondingly, H = 0 in formula (1.4), then

M(h, 0) is found explicitly14 and, in particular, the 2 × 2-block (Mj,1
p,1(h, 0))

2

j,p=1
is proportional7,19 to the matrix M of the coefficients of the

representation (2.11). In order to calculate M(h, H) in the case of a curved crack, the solutions wj,k of the model problem in R2\L have to
be completely determined. However, in view of the smallness of the angle of deviation of the branch, only a few terms of the asymptotic

(3.8)

are required for the purposes of this paper.
According to the notation (3.2) and relation (1.4), we have

(3.9)

and, in constructing the asymptotic (3.8), we therefore make the coordinate substitution

(3.10)

in the model problem and transfer the data from the cut (3.2) onto the ray 		 = {	:	1 < 0, 	2 = 0}.
The method of linearization has been used previously in the case of slightly curved smooth and kinked cracks20–22,14,8 etc. (also, see

Refs. 23 and 2 for an alternative approach). A rigorous justification of this method is available (Ref. 16, Ch. 5). Examples24,25 show that
special attention has to be paid to the behaviour of the solutions close to the vertices of the distorted angles, However, no difficulties arise
in the situation considered here.
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4. Calculation of the energy release matrix

If F(�) = |�|
F(|�|−1�) is a homogeneous function of degree 
 then, when account is taken of the change of coordinates (3.10) and an
expansion in a Maclaurin series in the variable 	 is used, we obtain

(4.1)

Henceforth, ∂i = ∂/∂	i in this section. By increasing the length of the partial sum of the series, formula (4.1) can be written with any
specified accuracy O(|	|
−N).

We will represent the solutions of the second limiting problem mentioned in Section 3 in the form

(4.2)

We will initially deal with the case when k = 1 and note that formula (4.1) transforms the asymptotic conditions in the following manner

(4.3)

We now consider the boundary conditions when �1 < 0 or, what is the same by virtue of relation (3.10), when 	1 < −1:

(4.4)

Since, in the distorted parts of the surfaces L±, the normal (which is not a unit normal) has the form (±��′(�1), ∓1) and the equality
	2 = �(�(�1) − �(1) ± 0, is satisfied, by analogy with the calculation of (4.4), we find using Taylor’s formula with respect to the variable �2

(4.5)

Note that the factor �(�1) − �(1) vanishes at the point 	 = 0 and compensates for the singularities existing in the derivatives of the
stresses. Since the derivative �′(−1), generally speaking, is non-zero, the factors accompanying � and �2 on the right-hand sides of relations
(4.4) and (4.5) can acquire singularities of the first kind at the point 	 = (0, −1), the image of the vertices of the straightened out angles.
Discontinuities actually arise in these problems for W2,1(1) and W1,1(2) and it is well known (Refs. 24,25 and 16, Ch.5) that constructions
of an additional boundary layer are required when determining the next terms W2,1(2). By a fortunate coincidence of circumstances, the
terms W2,1(2) and W1,1(3) will not be required later.

We substitute formulations (4.2) and (3.9) into formulae (4.3)–(4.5) and collect the coefficients of like powers of the parameter �. Each
term of expansion (4.2) satisfies the homogeneous equilibrium equations in R2\�̄�. Using these equations and the boundary conditions
obtained in formulae (4.4) and (4.5), we find the relations which the terms Wj,1(m) satisfy. In the simplest case when m = 0, we have

(4.6)
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(4.7)

We will give the solution Wj,1(0) explicitly. Actually, the vector function Wj,1(0) = Xj,1 satisfies equilibrium equations (1.1) in R2\�̄�,
boundary conditions (4.6) and growth conditions (4.7). Hence, all the terms on the right-hand side of relation (4.7), with the exception of
Xj,1(	), mutually cancel each other out. From this, using relations (2.11) and (2.15) for the singular solutions, we derive the equalities

(4.8)

Relations (4.4) and (4.5) give the boundary conditions on the surfaces �±
� of the cut 		 for the second terms Wj,1(1) of formulation (4.2)

(4.9)

Taking account of the equilibrium equation

and property (2.4) of the deformation basis, we convert boundary conditions (4.9) to the form

(4.10)

(4.11)

(4.12)

Finally, separating terms of the order of � in the asymptotic conditions (4.3), we obtain

(4.13)

Note that, in expansion (4.3), the term �(1)∂1∂2Xj,1(	), occurring in formula (4.3), is attached to the residue O(�−3/2).
The vector function W1,1(1) satisfies the homogeneous boundary conditions (4.10) and, according to relation (4.13), vanishes at infinity

as O(�−1/2). Consequently, W1,1(1) = 0 in view of the uniqueness of the energy solution. By virtue of equality (2.13), the right-hand side of
relation (4.13) is equal to zero only in the case when

(4.14)

The factor �(1) is defined by formula (3.9) and depends on the small parameter h.
Boundary conditions (4.11) and (4.12) for the vector function W2,1(1) are non-trivial and we calculate the quantities M2,1(1)

2,1 and M2,1(1)
1,2

using Green’s formula in a circle with a cut. Denoting a circle with radius R > 1 by �R, we have

(4.15)

We substitute expressions (4.11) and (4.12) into the right-hand side of the equality (4.15) and it vanishes since the integrals along the upper
and lower surfaces of the cut are identical according to property (2.3) of the deformation basis. Now, taking the limit as R → +∞ and taking
account of formulae (2.7) and (2.9), we transform equality (4.15) to the form

(4.16)

The integral Q(∂2X2,1, X2,1; �R) is not invariant but it is independent of the radius R of the circle due to the fact that the integrand is equal
to o(�−1). If the crack lies in the plane of elastic symmetry, then M2,1(1)

2,1 = 0.
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Replacing the power solution X2,1 by the solution X1,2 in formula (4.15), we find

(4.17)

The right-hand side of the analogous formula

is calculated using relations (2.4) and (2.18). Now, due to the normalization conditions (2.7), we have

(4.18)

Formulae (4.8), (4.14), (4.16) and (4.18) show several terms of the asymptotic (3.8) of the elements of the energy release matrix. We will
now verify the additional equalities

(4.19)

(4.20)

We first find the boundary conditions for the third term W1,1(2) of formulation (4.2) which, according to representations (4.3) and (3.9),
satisfies the conditions

Since W1,1(0) = X1,1 and W1,1(1) = 0, from formulae (4.4), (4.5) and (1.1), (2.5) we derive the relations

Due to the normalization conditions (2.2) and the properties (2.3) and (2.4) of the power solutions (2.1), the right-hand sides are calculated
explicitly and, in the case when k = 2, they are zero and, in the case when k = 1, they have different signs on the surfaces. Consequently, the
technique used when calculating (4.15) and (4.17) confirms equalities (4.19). Moreover, using relations (2.2), (2.4) and (2.18) in a similar
manner to transformations (4.17) and (4.18), we calculate the coefficient

(4.21)
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We will now verify that formulae (4.20) hold, that is, we will prove the relation M1,2
1,2 = O(ε2). The Cartesian components of the first

strain vector (2.16) depend linearly on the variables x1 and x2. Consequently, according to formula (4.1), the difference X1,2(�) − X1,2(	) is a
stiff translational displacement, which can be neglected in the asymptotic condition

It follows from this that W1,2 = X1,2, and this means that the first equality of (4.20) holds.
Taking account of the transformations (4.4) and (4.5) and the homogeneity of the stress field (2.17), we find the boundary conditions

for term W1,2(1) of formulation (4.2)

(4.22)

The vector function W1,2(1) attenuates fades at infinity and the coefficient M1,2(1)
1,2 of the power solution Y1,2(	) in its expansion at infinity

can be calculated using the method of (4.17). However, by virtue of formulae (4.22) and (2.18), the jumps in the functions �21(W1,2(1)) and
X1,2

1 on the cut 		 are zero and, consequently, the following equalities hold

5. The total energy increment and a model of the Griffith criterion

According to formulae (3.1), (3.7) and (3.9), the increment in the total energy �T = �U + � due to the formation of a branch ϒ(�) of a
crack L can be represented as

(5.1)

(5.2)

The dots indicate a residue O(h5/2 + �2). The calculations carried out in the preceding section, reveal the dependence of expressions (5.2)
on the small parameter �. In particular, by virtue of formulae (3.1), (3.7) and (2.23), (3.8), (4.14), we have

(5.3)

In the case of the quasistatic growth of a crack, its length changes smoothly, that is, h(�) is infinitesimally small when � → +0. If the
factor T0

2 = T2(0) accompanying h is positive, then, in the case of a small � > 0, the functional (5.1) reaches a minimum at the point h = 0,
that is, the crack is stationary. The case when T0

2 < 0 corresponds to a jumpwise change in the length of the crack, since any increase in
the parameter h � 1 causes a decrease in the magnitude of �T, and it is impossible to study the fracture process without taking dynamic
effects into account. So, the equality

(5.4)

serves as the necessary condition for the quasistatic growth of a crack.
We collect the factors accompanying the powers of �0 and �1 on the right-hand side of formula (5.3), equate their sum to zero and

obtain

(5.5)

(5.6)

Relation (5.5) determines the critical value of the SIF K0
1,1 of the first mode, but only approximately without taking account of shear

loading. From formulae (5.6) and (5.5), we obtain

(5.7)

By virtue of relation (1.4), the quantity (5.7) is the approximate value of the angle of deviation of the branch ϒ(�) from the axis of the
crack. The asymptotic procedure can be continued and the following terms of the expansion of the function H2 in a Taylor’s series with
respect to the variable � can be calculated. However, in the most interesting case of an isotropic medium, formula (5.7) loses its meaning,
since

(5.8)
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The equalities (5.8) also hold if the crack lies in a plane of symmetry of the physical properties of the medium. In a material with
anisotropic elastic properties and isotropic strength properties, the equality M12 = 0 picks out8 the directions of the rectilinear development
of cracks, subject to the condition that K0

2,1 = 0. We will henceforth assume that conditions (5.8) are satisfied and we thereby include an
isotropic material with a shear modulus  and a Poisson’s ratio v in the treatment for which

(5.9)

Assumption (5.8) simplifies the expressions for the quantities T0
2 and T1

2 in expansion (5.1)

(5.10)

(5.11)

According to the Griffith fracture criterion, at any instant � ≥ 0 the crack is located in a position which ensures a minimum of the total
energy functional or of its increment (5.1). Since the quantity T0(�) = U� is independent of a variation in the form of a crack, we replace the
increment �T by the sum of the three asymptotic terms

(5.12)

Seeking the minimum of the functional (5.12), we approximately calculate the unknowns h(�) and H(�, x1), describing the length and
form of the branch of the crack. Equality (5.4) determines the critical load. We specify the instant � = 0 such that the load g(0) = g0 = g1 + �g2

turns out to be precisely the critical load. Expression (5.10) depends quadratically on the coefficient H2(�) of series (1.4) and, according
to the Griffith criterion, the quantity �H2 which specifies the angle of deviation of the crack from the initial direction is such that, other
conditions being equal, the first term in the trinomial (5.12) takes the least value (at this stage, the remaining terms should be neglected
in view of the smallness of the parameters h and �). Hence, by assumption (5.8), we find

(5.13)

The Equality (5.4) shows that a crack L is in equilibrium in the case of the following condition associating the SIFs K0
1,1 and K̄0

2,1 = ε−1K0
1,1

with the surface energy density

(5.14)

Without any loss of accuracy, relations (5.14) and (5.13) can be rewritten in the form

(5.15)

(5.16)

In the case of an isotropic medium (5.9) M22/M11 = 1 and �0
′′ = 0 and, therefore,

6. Scenarios for the growth of a crack under longitudinal loading

We will assume that the coefficient K0
1,2 in expansion (2.19) of the solution u0(x) of problem (1.1), (1.2) in non-zero in the case of a body

�/L under a load g0. According to relations (2.16) and (2.17), K0
1,2 is the value of the regular component of the stress �11(u0) at the crack tip,

K0
1,2 > 0 in the case of longitudinal stretching of the crack and K0

1,2 < 0 in the case of longitudinal compression.
We note that, by virtue of relations (3.9),

On separating out the terms of the order of h3/2 in asymptotic representations (3.1) and (3.7) and taking account of formulae (4.14) and
(4.18), (4.21), we obtain that the factor T0

3 = T3(0) in the trinomial (5.12) has the form

(6.1)
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Fig. 1.

The first two terms on the right-hand side of relation (6.1) mutually cancel owing to formula (5.13) for H2. This fact, which is important for
the successive application of the Griffith criterion, eliminates the quantity H3 from the expression for T0

3 and, in the case of small � and h,
reduces the problem of finding the minimum of the functional (5.12) to an investigation of the function

A graph of this function is shown schematically in Fig. 1 for different constraints imposed on the coefficients

(6.2)

Hence, one of the following possibilities is realized when K0
1,2 /= 0.

1◦. If K0
1,2 > 0 and T1

2 > 0 (the stretching along the crack and the SIF decrease), the crack is stationary, that is, a minimum of the functional
(5.12) is obtained when h = 0.

2◦. If K0
1,2 > and T1

2 < 0 (the stretching along the crack and the SIF increase), the crack develops quasistatically and stably and the position
of its tip at an instant � is determined using the formula

(6.3)

3◦. If K0
1,2 < 0 and T1

2 < 0 (compression along the crack and the SIF increase), the position of the crack is unstable: it can remain stationary
but, by virtue of perturbations due to asymptotic terms which have not been taken into account, it can transfer to the position (6.3),
corresponding to a maximum of the functional (5.12). Further lengthening of the crack causes an avalanche-type growth.

4◦. If K0
1,2 < 0 and T1

2 > 0 (compression along the crack and the SIF decrease), the crack grows in an avalanche-type manner and a prognosis
of the fracture process is unjustified without taking account of dynamic effects.

Under the assumption that K′
1,1 > 0 and K′

2,1 = 0, in the case of an isotropic material (5.9), formulae (6.2) and (6.3) take the form

(6.4)

In representations (3.1) and (3.7) of the energy increments � and �U, we collect the factors accompanying h2 and, applying formulae
(3.8), (3.9) and (4.8), (4.14), (4.18), (4.21) for the elements of the energy release matrix, we find

(6.5)
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Here, M1,2(2)
1,2 (h) is the third term of expansion (3.8) of the element M1,2

1,2(h) of the energy release matrix. It had not been found explicitly

in Section 4 but the value of M1,2(2)
1,2 (0), calculated when h = 0 and appearing in relation (6.5), depends solely dependent on the coefficient

H2(�) of series (1.4).
By virtue of formula (5.13) for H2, the terms containing H4 cancel out (the terms with H3 in expression (6.1) disappeared in a similar

manner). According to the Griffith criterion, the function (6.5) must reach a maximum value with respect to the unknown H3. Consequently,
the quantity �H3, which, according to relation (1.4), determines the form of the deflection of the branch of the crack, has the form

(6.6)

For an isotropic material, the right-hand side of relation (6.6) is equal to

In the case of stable growth of the crack, taking the quadratic term h2T4(�) in the functional (5.12) into account enables us to refine
expression (6.3) for the length of the branch

However, this formula is implicit when K0
1,2 /= 0 since the coefficient M1,2(2)

1,2 (0) in relation (6.5) has not been determined.

7. Scenarios for the crack growth without longitudinal loading

Suppose K0
1,2 = 0 in addition to requirements (5.8). Then, according to formulae (5.13) and (6.6), expression (6.1) becomes negligibly

small and the trinomial (5.12) is replaced, with a permissible error, by the sum

(7.1)

On retaining quantities O(1) compared with the small parameter � on the right-hand sides of relations (6.5) and (5.11), we find the
coefficients of the binomial (7.1)

(7.2)

A graph of the function

is shown in Fig. 1.
Putting a = T0

4 and b = T1
2 , we see that one of the following possibilities is occurs realized under the above-mentioned conditions.

1◦. If T0
4 > 0 and T1

2 > 0 (in particular, the SIF K0
1,1 + �K ′

1,1 decreases), crack stops, that is, a minimum of the functional (7.1) is reached
when h = 0.

2◦. If T0
4 > 0 and T1

2 < 0 (the SIF K0
1,1 + �K ′

1,1 increases), the crack develops quasistatically and stably, and the position of its tip at an instant
� is found from the formula

(7.3)

3◦. If T0
4 < 0 and T1

2 > 0, the crack is unstable and, after passing into the position (7.3), corresponding to a maximum of the functional (7.1),
an avalanche-type growth of the crack occurs.

4◦. If T0
4 < 0 and T1

2 < 0, the fracture process is of the avalanche-type from the very beginning and a quasistatic model is unacceptable.

8. Discussion

According to formula (5.16), the angle of deviation of the branch ϒ(�) from the Ox1 axis is opposite to the sign of the SIF K0
2,1. In the

case of a stretching longitudinal stress K0
1,2 > 0, the quantity (6.6) has the same sign as the SIF K0

2,1, that is, distortion of the branch ϒ(�)

brings its tip closer to the axis of the initial crack L. In the case of a compressive longitudinal stress K0
1,2 < 0, the branch deviates in the

direction of the Ox1 axis. However, it has already been established in this case that the fracture process acquires a dynamic character and
a prognosis of the form of the crack on the basis of a quasistatic model is hardly possible.
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As would be expected, the critical load, found from relation (5.15), and the parameters (5.16) and (6.6) of the crack trajectory are
calculated only using the SIFs K0

1,1, K0
2,1 and the longitudinal stress K0

1,2, that is, using the characteristics of the stress-strain state at the
instant � = 0. However, the length of the branch ϒ(�) and, in particular, the start of the crack are determined from to formulae (6.3) or (7.3)
taking account of the SIFs K′

1,1 and K′
2,1 which are caused by the evolution of the load, that is, by the term �g′ in representation (1.3). Note

that, when � > 0, the SIFs K0
j,1 + �K ′

j,1 are fictitious: they correspond to a load g(�) which has changed but for the initial position of the crack.

The properties of the fracture process under conditions of longitudinal stress K0
1,2 /= 0 have been established in Section 5 on the basis

of the local characteristics K0
j,1, K ′

j,1 and K0
1,2 of the stress state at the mouth of the crack. This is unexpected since, both in the case of

the rectilinear propagation of a crack13,19 as well as in the case when K0
1,2 = 0, the state of the crack, which is a quiescent state, a stable

quasistatic state or one of dynamic growth, depends on the element L1,1
1,1 of the matrix L (see formulae (7.2) and (7.3)). The coefficient L1,1

1,1

of the expansion of the weighting function �1,1 is a global characteristic of the body � and the crack L. Hence, when there is no longitudinal
stress in the bodies �1\L1 and �2\L2 but there is the same stress-strain state near their tips, the fracture process can occur in a different
was. For example, in the case of a small length, a boundary crack L usually grows in a stable manner but, on approaching the opposite
boundary of the body, it always grows in an avalanche-type manner. Meanwhile, the external loads can be selected such that the SIFs
K0

j,1, K ′
j,1 and K0

1,2 are the same for both positions of the crack tip.

We now point out a further special feature of the crack growth under a longitudinal stress K0
1,2 > 0. It starts with zero velocity ∂�h(0) but

with a large acceleration ∂2
� h(0), since the factor accompanying �2 in expressions (6.3) and (6.4) contains the small SIF K0

2,1 of the second
mode in the denominator. This fact reduces the permissible upper boundary of the change in the time-like parameter �, that is, in order to
maintain the accuracy of the asymptotic formulae, it is necessary that the product �−2� should remain small. However, if K ′

1,1 = O(ε2) and
K ′

2,1 = O(ε), then not only the denominator (5.8) turns out to be small but, also, the numerator (5.11) in relation (6.3) and, consequently,
additional constraints on the magnitude of � are not necessary.

The factor � = (1 + � ′′
0/�0)−1 in formulae (5.15), (5.16) and (6.2) reflects the anisotropy of the strength characteristics of the material.

Since it is assumed that � ′
0 = 0, the inequality � < 1 implies that the surface energy density has a strict minimum at the point � = 0. At the

same time, according to formulae (5.16) and (5.15), the angle of deviation of the crack decreases and the critical load increases compared
with the isotropic case. If, however, � > 1 and the density � has a strict maximum when � = 0, then the opposite pattern is observed.
Moreover, when � � 1, the rapid decrease in �(�) accompanying the growth in |�| leads to a significant deviation of the crack form the
initial direction and asymptotic methods cannot be used to solve the problem.

For any scenario, the length of the branch does not depend solely on the SIFs K0
j,1 and K ′

j,1 but, also, on the coefficients accompanying

the singularities o(r1/2), that is, on the longitudinal stress K0
1,2 and the lowest SIFs K0

1,3 in Section 7.
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